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Resonance Electromagnetic Absorption by
Nonspherical Dielectric Objects

PETER W. BARBER, MEMBER, IEEE

Abstract—The extended boundary condition method (EBCM) is used
to develop a theoretical solution for the internal fields of isotropic and
homogeneous nonspherical dielectric objects. The formulation is partic-
ularly effective for resonance-sized bodies. The computational capa-
bilities of the technique are demonstrated by presenting numerical
calculations of absorption efficiency versus electrical size (ka) and
internal-field distributions at resonance for a number of lossy axisymmetric
objects including spheres, spheroids, and a finite cylinder. The numerical
limitations are discussed and a method is given which allows extension of
the numerical technique to a larger class of problems.

I. INTRODUCTION

HERE is currently a great interest in the scattering and

absorption characteristics of dielectric objects. This
interest is the result of a variety of new and diverse problems
involving the interaction of electromagnetic (EM) waves
with closed dielectric bodies. These studies include a de-
termination of the power-absorption characteristics of man
due to exposure to EM waves [1], the absorption and
scattering of microwaves by raindrops [2], the design of
miniature microwave filters using resonant spheres [3], and
continuing investigations to apply laser light-scattering
techniques to problems in microbiology [4]. In all of these
studies a theoretical solution which describes the EM inter-
action is crucial. For spherical objects the Mie theory is
used, while for other geometries it is necessary to employ
alternate techniques, and these generally involve approx-
imations with limited range of applicability, e.g., low ka,
small deviation from spherical shape, etc. The need for
new methods of analysis which will provide quantitative
results and also increase our understanding of the inter-
action mechanisms, especially techniques suitable for non-
spherical objects on the order of a wavelength in size
(resonance-sized objects), is clearly indicated. Recent
theoretical advances in this area have included a study of
the resonance behavior of very high permittivity dielectrics
[5], [6] and the solution of the vector wave equation in
spheroidal coordinates [7].

A powerful technique for analyzing the interaction of
electromagnetic waves with closed three-dimensional bodies
has been developed by Waterman and is summarized in [8].
This technique, called the extended boundary condition
method (EBCM), is ideally suited to investigating the
resonance-region scattering and absorption characteristics
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of arbitrary-shaped dielectric objects. Furthermore, the
theory is also applicable to an arbitrary number of bodies
and to layered bodies [9], [10].

An alternative development of the EBCM has recently
been given and has been applied to an investigation of the
differential scattering characteristics of arbitrary-shaped
dielectric bodies [11]. In the present paper, the EBCM is
applied to the internal problem and we look at the case
where the dielectric object is homogeneous, isotropic, and
lossy, i.e., the dielectric constant is complex. This is a model
which is useful in studies of EM absorption by man and
raindrops and resonance characteristics of microwave
resonators. It should be pointed out that although the
absorption cross section and absorption efficiency can be
determined independently from the scattering cross section
by the forward amplitude theorem [12], the absorption
problem must be solved separately if one requires detailed
knowledge of the internal or surface-field distribution as
well as total absorption.

The analysis begins with the development of the EBCM
as it applies to the internal problem. The application of the
extended boundary condition method to the internal-field
problem closely follows the dévelopment which has pre-
viously been given for the dielectric-scattering problem.
Therefore, only the highlights of the theory will be given
here and the interested reader is referred to a previous
paper [11].

The overall goal is to determine the internal field when an
arbitrary dielectric body is illuminated by a plane electro-
magnetic wave. The dielectric body, assumed homogeneous
and isotropic, is characterized by the constitutive param-
eters i and &, where ¢ may be complex, to describe a lossy
material, and the surrounding medium is considered to be
free space with parameters pq,6,. The problem is illustrated
schematically in Fig. 1. We call this the complete problem
to distinguish it from a special problem which will be con-
structed to aid in the solution. The total field everywhere
is given by the sum of the incident field and the scattered
field, where the incident field E\,H' is the field present in
the absence of the scatterer, and the scattered field E*,H* is
given by the difference between the field with the object
present (E,H) and the incident field; that is,

EE=E-E' H =H- H.

This scattered field can be thought of as the field produced
by polarization currents within the object.

We wish to solve for the total field (E,H) within the
dielectric body. To accomplish this, we begin by applying
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Fig. 2. Application of the equivalence theorem to the scattered-field
sources.

the equivalence principle to construct a special problem
which is used as an aid in solving the complete problem.
Analyzing this special problem (which is identical to the
problem of scattering by a perfect conductor), we write an
expression for the scattered field in terms of tangential
fields (currents) over a surface corresponding to the surface
of the object. At this point, both the scattered field and the
surface currents are unknown. We then obtain a relation-
ship between the scattered field and the known incident
field (by virtue of the fact that they must cancel each other
in the interior of the special problem) and solve with the
previously obtained expression to write the surface tan-
gential fields in terms of the incident field. Returning then
to the complete problem, we realize that the surface fields
can also be written in terms of the internal field, thereby
providing a relationship between the internal field and the
incident field.

The general applicability of the method is demonstrated
by making numerical calculations of the absorption effi-
ciency and internal-field distributions at resonance for a
variety of lossy dielectric bodies, including spheres, spher-
oids, and a finite cylinder. The numerical limitations are
discussed and a method is given which allows extension of
the numerical technique to a larger class of problems.

TI. ANALYSIS OF THE SPECIAL PROBLEM

Consider a closed surface S which separates an isotropic
homogenous medium into two regions as shown in Fig.
2(a). All the sources are contained within S so that the
region outside S is source-free. Schelkunoff’s equivalence
theorem [13] states that the field in a source-free region
bounded by a surface S could be produced by a distribution
of electric and magnetic currents on this surface and, in
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Fig. 3. The special problem which has been constructed to aid in the
solution of the original problem. E, and H, are the external fields

evaluated at the surface.

this sense, the actual source distribution can be replaced
by an equivalent distribution. Furthermore, if the field
produced by the original source is E*,H*, then the equivalent
sources on S consist of an electric-current sheet of density
n x H° and a magnetic-current sheet of density E* X a,
where the normal » points from the region containing the
sources to the source-free region. The application of
Schelkunoff’s equivalence theorem is shown in Fig. 2(b).
Note that the boundary conditions at S indicate that the
surface currents produce a null field within S.

We relate the sitvation shown in Fig. 2 to the scattered-
field portion of our problem by identifying J and M in Fig.
2(a) as polarization currents within S (which have been
induced by an incident field), which radiate in free space to
produce the scattered field ES,H®. In Fig. 2(b) these polar~
ization currents have been replaced by equivalent surface
currents which radiate the scattered field external to S and
produce a null field inside S.

A similar procedure can be applied to the sources of the
incident field and when combined with the equivalent prob-
lem which has been previously derived for the polarization
currents and performing some additional transformations
[11], we obtain the situation shown in Fig. 3.

It can be seen that external to the surface S, the sources
and fields are exactly the same as those existing in the
original problem and we have replaced the dielectric object
by a set of surface currents over a surface S. Furthermore,
these surface currents radiate in unbounded free space to
produce the scattered field outside S and the negative of the
incident field inside S. It should be emphasized that by
using the equivalence theorem, we have created a special
problem which, while related to the original problem, is
merely an artifice which is useful in solving the original
problem. An interesting observation is that this special
problem, which is used to solve the dielectric EM problem,
is, in fact, identical to the perfect conductor problem, i.e.,
the'total field exists outside the body, with zero-field internal.

The entire region is unbounded and, therefore, the scat-
tered fields everywhere due to the surface currents J, and
M, can be determined via vector magnetic and electric



BARBER : RESONANCE ELECTROMAGNETIC ABSORPTION

potentials [14]. In particular, the scattered electric field is
given by

ES(r) = V x f (n x E)g(kRYdS — V x V
S

v f L x HOgkRYdS (1)
s JWEy

where g(kR) is the free-space Green’s function e™**/4nR;
R = |r — r'[; ¢’ and r are position vectors from an interior
origin to source and field points, respectively; and & =
2n/A. An e”#®' time variation has been chosen Lo conform
to previous EBCM developments [8]-[11]. The total field
is then given by

g‘(r)} = Ei(r) + V x f (n x E.)g(kR)dS — V x V
- S

outside S
inside S .

@

With respect to the region inside S, the requirement that the
scattered field must cancel the incident field throughout the
interior volume gives us an important relationship between
the surface tangential fields and the incident field.

« [ x Bk ds,
s JWép

fo(anQg(kR)dS— VxV
s ]

x f L (n x H)g(kR) dS = ~E@®). (3)
s JWEy

This equation can be expanded in a form suitable for
numerical processing by making use of the spherical vector
harmonics M and N which have been defined by Stratton
[15]. Using these spherical vector harmonics, the incident
field is given by

Er) = ¥ D,[a,M,'(kr) + b,N, (kr)] 4)
v=1
where v is a combined index incorporating the spherical
harmonic indices o, m, and n. D, is a normalization constant
and the expansion coefficients a, and b, are assumed known
for a specified incident field. The superscript 1 on M and NV
indicates that these functions are of the type which are
finite at the origin. The terms in the integrals of (3) are
expanded as follows:

(n x E,)g(kR) = (n x E,) G (52)
(n x H.)gkR) = (n x H.)* G (5b)
where G(kR) is the free-space Green’s dyadic given by
Morse and Feshbach [16].
GR) =& 3 D, (M k)M, )
ne + N23(krs)N, (kr)] (6)

r.,F. are, respectively, the greater and lesser of »¢’. The
irrotational terms normally present in (6) are not specified,
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as they will be eliminated due to the curl operation in (3).
M" and N*! are functions finite at the origin, and M? and
N? are functions representing outgoing waves.

Equation (3) is required to hold throughout the entire
interior volume, i.e., for all r inside S. Equations (4)-(6)
can now be substituted into (3), but before doing so, it
should be pointed out that the Green’s function expansion
g(kR) = ¢®[AnR has a singularity at R = 0, i.., for
r = r’. Therefore, an expansion of (3) about an origin
within the enclosed volume would appear to be valid only
within an inscribed sphere rather than in the entire interior
volume as required. This is true; however, it has been shown
using analytical continuation arguments [8] that the solu-
tion of (3) within an inscribed sphere does, in fact, guarantee
that the total field will be zero throughout the entire interior
volume.

Substituting (4)-(6) into (3) gives the following set of
equations for the surface currents in terms of the incident-
field coefficients:

J'%Z f [Nf(kr')-(n x E.)

N j(?)I/ZMug,(kr/).(n X H+)] dsS = —a, (73)
0
jk? [Mj(kr’)-(n x E.)
S
1/2
+i(2) Nty x B ds = <b, ()
€o

where ¢ = 1,2,3,- - -. Note that the substitution into (3) has
resulted in two sets of equations. The reason for this is that
the coefficient of each regular wave function (M or N)
must vanish separately due to the orthogonality of the
functions over a spherical surface about the origin. The
solution of (7) guarantees that the total field will be zero

throughout the entire interior volume.

III. Tur CoMPLETE PROBLEM

Returning now to the original problem which we set out
to solve, assume that the field inside the dielectric region
can be represented by

N

E(kr) = Y [e,Mkr) + dN, KP]

p=1

(8a)

where p plays the same role as v in (6) and c, and d, are
unknown coefficients. k' = w(ue)'’? = (u,¢,)'/*k. The H-
field internal to S is given by

Hk'Y) = —— (V x E(k'r)
jop

"
Uy Ho
N

. Z [N (K'r) + dM,}(k'r)]. (8b)
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The surface tangential fields » x E, and n x H, which
appear in (7) are the source of the scattered field in the
special problem as specified in (1). The scattered field in
the special problem is the same as the scattered field in the
complete problem (the application of the equivalence
principle insured this), so the surface tangential fields
n x E, andn x H, are the same fields in both the special
problem and the complete problem. These tangential sur-
face fields are in terms of the total external field evaluated
at the surface. In the case of the complete problem, we can
also write these in terms of the internal fields evaluated at
the surface by applying the boundary conditions at the
surface of the complete problem.

nx H.=nx H_
®)
nx E, =nx E_.

The plus (+) sign and minus (—) sign subscripts on the
surface fields indicate that these fields are the total external
and internal fields, respectively, evaluated at the surface.
From (8), the tangential components of the internal fields
evaluated at the surface are

N
nxE_ =% [cnx MNK?)+ dn x Nk'r)]
p=1

(10a)
172 172
ol
(2 Uo
N
. 21 [c.n x N (K'r') + dn x M, (k'¥)]
=
(10b)

and due to the equality of the tangential surface fields in (9),
the expansions in (10) can be substituted into the first 2N of
(7), giving a system of equations relating the unknown
internal-field expansion coefficients to the known incident-
field coeflicients

&, 1/2 g, 1/2 .
[K + (—) J] c, + [L + (;) I] d, = —ja,
u=1,N (1la)
e\ 1/2 e\ 1/2
[1 + (_) L] 6+ [J + (_) K] d, = —jb,,
Hy. Ky
u=1N (11b)
where v = 1,N, and the 7 coefficients are given by
k2 3 ’ 177,740
I'=— | nM} k') x M, (k'r') dS
n Js

while the J, K, and L coefficients have a similar form except
for the cross products which are given by M,* x N,
N2 x M,', and N,* x N,!, respectively.

This set of 2N-by-2N simultaneous linear equations can
be solved for the internal coefficients ¢, and d,. These can
then be substituted into (8a) to find the electric field at any
internal point (M and N are functions of 6, ¢, and k'r in the
interior of the object).
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The electric field can be determined at points of interest
within dielectric objects with a real or complex dielectric
constant. In the case of lossy objects, the distribution of
volume power dissipation due to a specified incident field
can be determined by calculating the quantity 1¢|E|® at
internal points of interest (¢ here is conductivity as opposed
to its use in.(4) as a spherical harmonic index). The two
features which will be studied here are the internal-field
distributions and the absorption efficiency or normalized
absorption cross section, which is given by

Cabs

y (12)

Qabs =

where A is the geometric cross section of the body and C,y

is the absorption cross section which is equal to the total

power absorbed divided by the incident power density S;
_ Yo [y |EI*dV

Cips = ———

s, (13)

IV. NuMERIcAL CONSIDERATIONS

There are essentially three major operations involved in
determining the internal electric field and thereby the absorp-
tion efficiency or other desired internal quantity. Given a
specific dielectric object, the first step is to select an internal
origin and numerically perform the surface integrations
which are required to fill the coefficient matrix in (11). This
procedure is accomplished by using a Bode quadrature
technique [17]. The second step is to solve (11) for the
internal-field coefficients ¢, and d,. This is accomplished by
using a standard Gauss-Jordan algorithm. The third step
then is to substitute the coefficients into (8a) to obtain the
internal electric field.

The method of numerical solution for a particular prob-
lem consists of choosing a value for N (N is the maximum
value of 1 and v and is a combined index incorporating the
spherical harmonic indices o, m, and #n), solving the set of
equations for the internal field, then repeating the calcula-
tion for successively larger N values until the final result in
(8a) converges to a specified accuracy. The maximum value
of N required for a given problem is dependent on the shape
(deviation from a sphere), size, and dielectric constant of
the object. Small spheres with a dielectric constant near
unity require small values of N, while a large cylinder with
relatively high index of refraction would require a much
larger N value for solution. To reduce the numerical com-
plexity, we consider only axisymmetric objects here. For
axisymmetric objects, many of the cross terms involving o
(the even—odd index) drop out and, furthermore, it is pos-
sible to separate out the m dependence (azimuthal variation)
so that rather than solving a 2N x 2N system of equations
once, it is possible to solve a much smaller 2z x 2n system
m times. This is equivalent to solving the problem for each
azimuthal mode separately. This simplification carries
through to the internal-field summation in (8a) so that the
internal field can be broken down into separate summations
over each azimuthal mode m. Each component summation
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is summed over 7z and the total electric field is then found
by summing up the individual fields due to each mode.

The validity of the numerical procedure was verified by
making calculations for spherical bodies and comparing the
results to those obtained by the Mie theory. Comparison
was also made with low ka prolate spheroid calculations
which were obtained using the long wavelength approx-
imation [1]. Identical results were obtained in both cases.
In all subsequent calculations, an ongoing validity test is
made by first computing the internal field in an object with
the mathematical origin of the problem located at the center
of the object. The calculation is then repeated for the
same object with the origin located off-center. This has the
effect of making the physical problem appear to be different
as far as the mathematics is concerned; however, the com-
puter program must calculate the same internal field in
either case.

V. NUMERICAL RESULTS

The equations from the previous sections have been
programmed for solution on the University of Utah
UNIVAC 1108, utilizing complex double precision arith-
metic. Calculations have been made for a variety of objects
characterized by a relative dielectric constant ¢, = &' — je”
where ¢’ = o/we,. The quantities which have been cal-
culated are absorption efficiency versus the electrical size
of the object (ka) and internal-field distributions at and
about the resonant point. The absorption efficiency has
been utilized rather than the absorption cross section so
that it is not necessary to specify a particular ¢ and fre-
quency. Combining (12) and (13) and defining

ER, = LIEEAY
vV
gives
_ Bceee'|E|2,
abs :;i

where ¢ is the speed of light and B = nV/id = kV/2A.
Note that B is a function of the geometrical shape and
(electrical) size of the object under consideration as well as
the angle of incidence of the arriving wave (the geometric
cross section A is a function of the angle of incidence).
Fig. 4 shows the four shapes considered here and gives the
factor B. Definitions of the angle of incidence and the
polarizations of the arriving wave are also given.

In the case of the internal distributions, we plot |E|?
rather than the internal power dissipation, making it un-
necessary to specify particular values of ¢ and therefore
frequency (we instead consider their ratio in ¢”).

The purpose of the numerical calculations is to demon-
strate the capabilities of the theoretical method in deter-
mining the salient features of the absorption characteristics
of nonspherical objects. Rather than presenting results for a
multitude of nonspherical geometrics, we instead focus our
attention primarily on one shape, the prolate spheroid. We
also show a few results for a finite cylinder and oblate
spheroid.

(14)
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Fig. 4. Definition of geometrical bodies and corresponding factor B.
The z axis is the axis of revolution and the angle of incidence is
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broadside incidence to = 90°. The polarization of the incident
wave is defined as either parallel or perpendicular to the x-z plane.
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Fig. 5. Absorption efficiency versus ka for a lossy dielectric sphere.

To provide a reference point for comparison, we first
show curves of absorption efficiency versus ka for a sphere.
The resonance absorption characteristics of spheres have -
been studied extensively and reported in the literature [18],
[19]. Fig. 5 shows the absorption by a sphere for three
values of dielectric constant which are multiples of each
other. The equality of the real and imaginary portions of &,
is an arbitrary choice. Qualitatively, we see that the resonant
ka point (the ka value giving maximum absorption) moves
lower with increasing ¢, and we attribute this to the wave-
length compression which occurs inside the sphere with
increasing & which increases the effective interaction
volume, giving a higher loss at lower ka values. For ka
values above the peak, minor osciilations may occur but the
efficiency approaches a limiting value as ka increases. In the
limit of large ka, we would expect the absorption and
scattering efficiencies to sum up to an extinction efficiency
of 2.
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prolate spheroid. Shows the absorption as a function of incident
angle and polarization for ka values well beyond the first resonance.
& = 3,536 — j3.536.

Fig. 6 shows the absorption characteristics of a 6:1
prolate spheroid as the angle of incidence is varied from
“end-on to broadside. To allow observation of the absolute
absorption behavior, all curves have been normalized to the
geometric cross-sectional area corresponding to an angle
of incidence of 90°. Some of the characteristics here can be
explained by the similarity of the prolate spheroid to a
dipole antenna. In the low ka region, the parallel polarized
case shows a maximum for 6,,, = 90°, while for higher ka
the absorption at 6;,, = 45° becomes greater. This is not
unexpected and is a result of the lobing effects seen in dipole
antennas as the electrical length increases above a half-
wavelength [20].

Although the effect is not as pronounced here as for a
wire antenna, physically we note that the effective length
seen by the 8, = 45° wave is less than the actual length

by a factor of \/ 2. This effective length is a major determi-
nant of resonance, and therefore a higher ka is required for
resonance at 0;,, = 45° than for the 8,,, = 90° broadside
wave. For the 6,,, = 0° end-on wave, resonance is greatly
dependent on the kb (= ka/6) dimension, and therefore the
ka value required for resonance for end-on incidence is
greater than that for the other two cases. An explanation of
the absorption characteristics for the electric field parallel
to the long axis of the spheroid based on the similarity of
the prolate spheroid to a dipole antenna is useful; however,
due to the large b dimension of the prolate spheroid relative
to a wire antenna, an alternative explanation is also pos-
sible. For low values of ka, it has been shown [21] that
the total absorption in a lossy dielectric can be considered
as the sum of the power absorption due to coupling by the
electric-field component of the incident wave and power
absorption due to rotating electric fields (causing eddy
currents) which is generated by the magnetic-field com-
ponent of the incident wave. The explanation which has
been developed based on a low ka theory would appear to
account partially for the absorption characteristics noted
here, even into the medium ka region.
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Fig.7. Absorption efficiency versus ka for a lossy 6:1 prolate spheroid.
Shows the effect of increasing dielectric constant for parallel and
perpendicular polarizations.

Although the original explanation [21] was used to
explain the coupling characteristics of spheres, it has also
been used to describe low ka coupling to prolate spheroids
[1]. Basically, the coupling of the electric-field component
is greatest when the electric-field vector is mostly tangential
to the surface and the magnetic-field coupling is greatest
when the cross-sectional area perpendicular to the magnetic--
field vector is greatest, i.e., the eddy-current coupling
[E-dl = jou | H-dA is greatest. Therefore, the parallel
polarized case at 90° incidence has maximum electric and
magnetic coupling, the perpendicular polarized case at 90°
incidence has minimum electric and magnetic coupling,
and the zero-degree incident case has minimum electric-
field coupling but maximum magnetic-field coupling. This
qualitative explanation accounts for the relative absorption
behavior in the low and mid ka ranges for the end-on and
broadside cases. For 45° incidence, the power absorption
for parallel and perpendicular polarizations falls between
the corresponding curves for end-on and broadside inci-
dence. At higher ka values this quasi-static explanation is
no longer valid, and at the limit for which calculations have
been made it appears that the absorption is becoming rel-
atively independent of the orientation of the incident wave,

Fig. 7 shows the absorption characteristics of a 6:1
prolate spheroid due to a broadside incident wave for three
different dielectric constants (which are multiples of each
other) and two polarizations. Qualitatively, we note that in
the parallel-polarized case, the ka value corresponding to
maximum absorption decreases with increasing dielectric
constant, which is similar to the sphere behavior exhibited
in Fig. 5. Similar calculations have also been made for a
3:1 prolate spheroid and the increased polarization sensi-
tivity in the 6:1 case is clear, i.e., the curves for parallel and
perpendicular polarizations are farther apart than in the
3:1 case.

Comparing the parallel-polarization resonance (the
lowest resonance) for prolate spheroids with different axial
ratios, it has been noted that for a given dielectric constant,
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Fig. 8. Resonant ka versus axial ratio for a set of prolate spheroids
with &, = 14.142 — j14.142. The circles are the resonate points as
interpolated from an absorption efficiency curve for each spheroid.
The solid line is the least squares fit.

the 6:1 spheroid resonates at a higher kg value than
spheroids with lower axial ratios. Fig. 8 examines this
behavior further by showing electrical length at resonance
versus the a/b ratio for prolate spheroids where the incident
wave is polarized parallel to the long axis. Note that for
high-axial-ratio prolate spheroids, the resonant length is
approaching an asymptote which is apparently independent
of the a/b ratio. This behavior is related to the relative effect
of the electric and magnetic coupling of the incident wave,
which has just been described. Consider for a moment a
set of prolate spheroids with the same @ dimension and
varying b dimensions. Using the arguments given earlier,
for the case of 90° incidence we would expect maximum
coupling of the parallel-polarized electric field for high a/b
ratios where the tangential component of the electric field
on the surface would be greatest. Resonance in this case
would primarily depend on the total length of the spheroid
being close to a multiple of a half-wavelength. For high a/b
ratios, the coupling of the magnetic component of the
incident wave is a minimum. For low a/b ratios, the electric-
field coupling is less, but the magnetic-field coupling is
greater (the cross-sectional area normal to the H-field
vector is greater). If we think of the H-field coupling as due
to closed loops about the H-field vector (eddy currents),
then we would expect maximum coupling (resonance) when
the circumference around the long dimension of the spheroid
is an integral multiple of a wavelength (or equal to one
wavelength for the first resonance). Setting the circumfer-
ence around the long dimension of the prolate spheroid
equal to a wavelength, the expression for resonant ka due
to magnetic-field coupling of the incident wave is

(ka)ees = V2/(1 + B?/a?).

Note that for a sphere this is unity and it saturates at V2
at high axial ratios. For low axial ratios, magnetic coupling
appears to be the primary determinant of resonance giving
away to FE-field dominance at higher a/b ratios and this
accounts for the increase in resonant ka with the axial ratio.
For a perfectly conducting wire antenna, we would expect
maximum electric-field coupling for the length equal to A/2
or ka = n/2 = 1.57. It is clear that the curve in Fig. 8 is
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and cylinder at the approximate resonant point (ka = 1.5). Broad-
side incident wave.

asymptotic to a value higher than this and this may be due
to the relatively low conductivity of the prolate spheroid
compared to a wire antenna.

Fig. 9 compares the absorption characteristics of a finite
circular cylinder and a prolate spheroid, both objects having
identical overall dimensions. The absorption characteristics
of the two shapes are very similar and it would appear that
the details of the shape are not critical in determining the
absorption. Fig. 10 gives the internal-field distributions at

- ka = 1.5 (the approximate resonant point) for both the 3:1

prolate spheroid and the 3:1 circular cylinder. The internal-
field distribution for the spheroid and cylinder are also very
similar. One interesting feature here is that the field is
greater on the backside of the cylinder than on the side upon
which the incident wave strikes.

Fig. 11 gives the magnitude of the surface field around the
major and minor dimension for the 3:1 prolate spheroid
shown in Fig. 9. The capability of being able to determine
surface fields should permit further understanding of the
reactive-field energy-storage characteristics of dielectric
objects, which is important in microwave-resonator applica-
tions. Although these curves simply show distributions
along the surface in two directions, it would be quite easy
to generate contour plots if we were interested in a detailed
study of surface-field behavior.
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Fig. 12.

Fig. 12 shows the absorption efficiency for an oblate
spheroid. Comparing this curve to corresponding curves
for the prolate spheroid, we see that the earlier explanations
of relative coupling and resonance frequency location also
apply here. In particular, when the incident angle is zero
degrees, the spheroid looks almost like a disk to the im-
pinging electric field and therefore the electric-field coupling
is very strong due to the large area of tangency. Using the
previous arguments on the independent coupling of electric
and magnetic components of the incident wave, we note
that for end-on incidence, the magnetic-field coupling
would be relatively weak, but the electrical-field coupling
is so large that this case gives the maximum absorption. For
broadside incidence with the electric field parallel, we have
minimum electric and magnetic coupling and therefore
minimum absorption. The electrical-field perpendicular case
for this angle of incidence has medium electric-field cou-
pling and large magnetic-field coupling giving a value of
absorption lying between the other two cases.

Calculations have been made to determine the limitations
of the numerical technique. Using a prolate spheroid model,
ka and &, were increased until the origin off-center validity
test showed that erroneous results were being generated.
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When this occurred, the computer program was dissected
to determine the mode of failure. It was found that the
matrix associated with (11) becomes ill-conditioned with
respect to matrix inversion and solution and that this ill-
conditioning appears to be a function of the same variables
which determine the matrix size required for convergence,
i.e., the shape (deviation from a sphere), size, and dielectric
constant. Ill-conditioning means that the solution vectors
(in our case ¢ and d) are very sensitive to small changes in
the coefficients of the (K~L-/-J) matrix and/or the right-
hand side coefficients (a and b). It is an indication that the
finite precision arithmetic available in the computer is not
sufficient to differentiate the correct solution out of a range
of solutions which satisfy the equations to the precision
limits of the machine [22].

Given an object for which a numerical solution is not
possible, it appears that of the physical characteristics that
define the object (shape, size, and e,), that reducing the
dielectric constant is most effective in restoring the condi-
tion of the matrix and thereby giving a solution. This indi-
cates a possible means of extension of the envelope of cases
for which the EBCM would be effective. Assume that one
requires the solution for a given object for which a straight-
forward application of the EBCM gives an ill-conditioned
system of equations, Then a set of calculations can be made
for a series of reduced dielectric constants and a curve of
Q.ps Versus ¢, can be generated and used to extrapolate to
the higher dielectric constant of interest. Fig. 13 shows such
a curve for the 6:1 prolate spheroid at ka = 1.5. Note that
the curve goes through a maximum which indicates a broad
region where the absorption is relatively independent of e,.
Also we note that the absorption efficiency can decrease or
increase with a given change in ¢,, depending on which side
of the peak we are operating. This technique has been
employed to calculate the power absorption in muscle-
tissue prolate-spheroid man models at VHF frequencies
where the complex dielectric constant is typically on the
order of a hundred.

VI. CONCLUSIONS

It has been shown that the EBCM can be used to de-
termine the field within and on the surface of nonspherical
dielectric objects during illumination by a plane electro-
magnetic wave. This information can be used to calculate
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the absorption characteristics, maximum field points, or any
other quantity desired. The theoretical technique as pre-
sented here is applicable to isotropic and homogeneous
bodies. We have considered objects with a complex di-
electric constant and have examined the dependence of the
absorption efficiency on the nonspherical shape. The
numerical limitations of the technique have been investi-
gated and a method for extending the region of applicability
has been indicated.
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