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Resonance Electromagnetic Absorption by
Nonspherical Dielectric Objects

PETER W. BARBER, MEMBER, IEEE

Abstract—The extended boundary condition method (EBICM) is used

to develop a theoretical solution for the internal fields of isotropic and

homogeneous nonspherical dielectric objects. The formulation is partic-

ularly effective for resonance-sized bodies. The computational capa-

bilities of the technique are demonstrated by presenting numerical

calculations of absorption efficiency versus electrical size (ka) and

internal-field distributions at resonance for a number of Iossy nxisymmetric

objects including spheres, spheroids, and a finite cylinder. The numerical

limitations are discussed and a method is given which allows extension of

the numerical technique to a larger class of problems.

1. INTRODUCTION

T HERE is currently a great interest in the scattering and

absorption characteristics of dielectric ob,jects. This

interest is the result of a variety of new and diverse problems

involving the interaction of electromagnetic (E,M) waves

with closed dielectric bodies, These studies include a de-

termination of the power-absorption characterist ics of man

due to exposure to EM waves [1], the absorption and

scattering of microwaves by raindrops [2], the design of

miniature microwave filters using resonant spher(ss [3], and

continuing investigations to apply laser light-scattering

techniques to problems in microbiology [4]. In all of these

studies a theoretical solution which describes the EM inter-

action is crucial. For spherical objects the Mie theory is

used, while for other geometries it is necessary to employ

alternate techniques, and these generally involve approx-

imations with limited range of applicability, e.g., low ka,

small deviation from spherical shape, etc. The need for

new methods of analysis which will provide quantitative

results and also increase our understanding of the inter-

action mechanisms, especially techniques suitab [e for non-

spherical objects on the order of a wavelength in size

(resonance-sized objects), is clearly indicated. Recent

theoretical advances in this area have included a study of

the resonance behavior of very high permittivity dielectrics

[5], [6] and the solution of the vector wave equation in

spheroidal coordinates [7].

A powerful technique for analyzing the interaction of

electromagnetic waves with closed three-dimensional bodies

has been developed by Waterman and is summarized in [8].

This technique, called the extended boundary condition

method (EBCM), is ideally suited to investigating the

resonance-region scattering and absorption characteristics
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of arbitrary-shaped dielectric objects. Furthermore, the

theory is also applicable to an arbitrary number of bodies

and to layered bodies [9], [10].

An alternative development of the EBCM has recently

been given and has been applied to an investigation of the

differential scattering characteristics of arbitrary-shaped

dielectric bodies [1 1]. In the present paper, the EBCM is

applied to the internal problem and we look at the case

where the dielectric object is homogeneous, isotropic, and

10SSY,i.e., the dielectric constant is complex. This is a model

which is useful in studies of EM absorption by man and

raindrops and resonance characteristics of microwave

resonators. It should be pointed out that although the

absorption cross section and absorption efficiency can be

determined independently from the scattering cross section

by the forward amplitude theorem [12], the absorption

problem must be solved separately if one requires detailed

knowledge of the internal or surface-field distribution as

well as total absorption.

The analysis begins with the development of the EBCM

as it applies to the internal problem. The application of the

extended boundary condition method to the internal-field

problem closely follows the development which has pre-

viously been given for the dielectric-scattering problem.

Therefore, only the highlights of the theory will be given

here and the interested reader is referred to a previous

paper [11].

The overall goal is to determine the internal field when an

arbitrary dielectric body is illuminated by a plane electro-

magnetic wave. The dielectric body, assumed homogeneous

and isotropic, is characterized by the constitutive param-

eters ~ and c, where e may be complex, to describe a 10SSY

material, and the surrounding medium is considered to be

free space with parameters VO,SO,The problem is illustrated

schematically in Fig. 1, We call this the complete problem

to distinguish it from a special problem which will be con-

structed to aid in the solution, The total field everywhere
is given by the sum of the incident field and the scattered

field, where the incident field Ei,Hi is the field present in

the absence of the scatterer, and the scattered field ES,HS is

given by the difference between the field with the object

present (E,H) and the incident field; that is,

ES=E– Ei Hs=H– Hi.

This scattered field can be thought of as the field produced

by polarization currents within the object.

We wish to solve for the total field (E,H) within the

dielectric body. To accomplish this, we begin by applying



374 ‘SEE TRANSACTIONS ON MICROWAVE THEORY AND TSCHNIQUI?S, MAY 1977

$

\

‘f
3.1

ii
h

\ u, E 1

Fig. 1, The complete electromagnetic problem. Jt and iW~ are the
sources of the incident field. (Overbars in figs. appear boldface in
text.)
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Fig, 2, Application of the equivalence theorem to the scattered-field
sources.

the equivalence principle .to construct a special problem

which is used as an aid in solving the complete problem.

Analyzing. this special problem (which is identical to the

problem of scattering by a perfect conductor), we write an

expression for the scattered field in terms of tangential

fields (currents) over a surface corresponding to the surface

of the object. At this point, both the scattered field and the

surface currents are unknown. We then obtain a relation-

ship between the scattered field and the known incident

field (by virtue of the fact that they must cancel each other

in the interior of the special problem) and solve with the

previously obtained expression to write the surface tan-

gential fields in terms of the incident field. Returning then

to the complete problem, we realize that the surface fields

can also be written in terms of the internal field, thereby

providing a relationship between the internal field and the

incident field.

The general applicability of the method is demonstrated

by making numerical calculations of the absorption effi-

ciency and internal-field distributions at resonance for a

variety of Iossy dielectric bodies, including spheres, spher-

oids, and a finite cylinder, The numerical limitations are

discussed and a method is given which allows extension of

the numerical technique to a larger class of problems.

IL ANALYSIS OF THE SPECIAL PROBLEM

Consider a closed surface S which separates an isotropic

homogeneous medium into two regions as shown in Fig.

2(a). All the sources are contained within S so that the

region outside S is source-free. SchelkunoiT’s equivalence

theorem [13] states that the field in a source-free region

bounded by a surface S could be produced by a distribution

of electric and magnetic currents on this surface and, in

Ii
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\
\\ /’
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Fig. 3. The special problem which has been constructed to aid in the
solution of the original problem. E+ and H+ are the external fields
evaluated at the surface.

this sense, the actual source distribution can be replaced

by an equivalent distribution. Furthermore, if the field

produced by the original source is ES,HS, then the equivalent

sources on S consist of an electric-current sheet of density

n x H’ and a magnetic-current sheet of density Es x n,

where the normal n points from the region containing the

sources to the source-free region. The application of

Schelkunoff’s equivalence theorem is shown in Fig. 2(b).

Note that the boundary conditions at S indicate that the

surface currents produce a null field within S.

We relate the situation shown in Fig. 2 to the scattered-

field portion of our problem by identifying Y and A4 in Fig.

2(a) as polarization currents within S (which have been

induced by an incident field), which radiate in free space to

produce the scattered field ES,HS. In Fig. 2(b) these polar-

ization currents have been replaced by equivalent surface

currents which radiate the scattered field external to S and

produce a null field inside S.

A similar procedure can be applied to the sources of the

incident field and when combined with the equivalent prob-

lem which has been previously derived for the polarization

currents and performing some additional transformations

[1 1], we obtain the situation shown in Fig. 3.

It can be seen that external to the surface S, the sources

and fields are exactly the same as those existing in the

original problem and we have replaced the dielectric object

by a set of surface currents over a surface S. Furthermore,

these surface currents radiate in unbounded free space to

produce the scattered field outside S and the negative of the

incident field inside S. It should be emphasized that by

using the equivalence theorem, we have created a special

problem which, while related to the original problem, is

merely an artifice which is useful in solving the original

problem. An interesting observatiori is that this special

problem, which is used to solve the dielectric EM problem,

is, in fact, identical to the perfect conductor problem, i.e.,

the’total field exists outside the body, with zero-field internal.

The entire region is unbounded and, therefore, the scat-

tered fields everywhere due to the surface currents J+ and

M+ can be determined via vector magnetic and electric
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potentials [14]. In particular, the scattered electric field is

given by

E’(r) = v x
J

(n X /Z+)g(kR) dS – V X V
s

x
J

~ (n x H+)g(kR) ds (1)
s jcoeo

where g(kR) is the free-space Green’s function ejhR/4nR;

R = Ir – r’ I; r‘ and r are position vectors from an interior

origin to source and field points, respectively; and k =

2rLfA An e-jut time variation has been chosen to conform

to previous EBCM developments [8]-[1 1]. The total field

is then given by

E(r)

o } J
= E’(r) + V X (n X E+)g(kR) dS – V X V

.s

(2)

With respect to the region inside S, the requirement that the

scattered field must cancel the incident field throughout the

interior volume gives us an important relationship between

the surface tangential fields and the incident field.

Vx
f

(n x E+)g(kR) dS – V x V
s

x J~ (n x H+)g(kR) dS = --E’(v). (3)
s jwo

This equation can be expanded in a form suitable for

numerical processing by making use of the spherical vector

harmonics Tl and N which have been defined by Stratton

[15]. Using these spherical vector harmonics, the incident

field is given by

Ei(r) = ~ DU[aUMU’(kr) + bUN,,l(kr)] (4)
“=1

where u is a combined index incorporating the spherical

harmonic indices a, m, and n. Do is a normalization constant

and the expansion coefficients a“ and bu are assumed known

for a specified incident field. The superscript 1 on ill and N

indicates that these functions are of the type which are

finite at the origin. The terms in the integrals of (3) are

expanded as follows:

(n x E+)g(kR) = (n x E+) “ ~ (5a)

(n x H+)g(kR) = (n x H+) “ ~ (5b)

where G(kR) is the free-space Green’s dyadic given by

Morse and Feshbach [16].

‘G(kR) = ‘~ ~ DU[iW03(kr>)MU’( kr<)
n 0=1

+ No3(kr>)Nu1(kr<)] (6)

r> ,r< are, respectively, the greater and lesser of r,r’. The

irrotational terms normally present in (6) are not specified,
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as they will be eliminated due to the curl operation in (3).

ikfl and Nl are functions finite at the origin, and M3 and

N3 are functions representing outgoing waves.

Equation (3) is required to hold throughout the entire

interior volume, i.e., for all r inside S. Equations (4)–(6)

can now be substituted into (3), but before doing so, it

should be pointed out that the Green’s function expansion

g(kR) = ejkR/4nR has a singularity at R = O, i.e., for

r = r’, Therefore, an expansion of (3) about an origin

within the enclosed volume would appear to be valid only

within an inscribed sphere rather than in the entire interior

volume as required. This is true; however, it has been shown

using analytical continuation arguments [8] that the solu-

tion of(3) within an inscribed sphere does, in fact, guarantee

that the total field will be zero throughout the entire interior

volume.

Substituting (4)-(6) into (3) gives the following set of

equations for the surface currents in terms of the incident-

field coefficients:

jkz

-J [
NU3(kr’) ~(n X E+)

Zs

()
1/2

+j~ 1MD3(kr’). (n x H+) dS = – a. (7a)
co

jkz—
([

Mo3(kr’) (n x E+)
ns

()
1/2

+j~ 1ND3(IW) “(n X H+) dS = –b. (7b)
e~

where & = 1,2,3, ”... Note that the substitution into (3) has

resulted in two sets of equations. The reason for this is that

the coefficient of each regular wave function (M or N)

must vanish separately due to the orthogonality of the

functions over a spherical surface about the origin. The

solution of (7) guarantees that the total field will be zero

throughout the entire interior volume.

III. THE COMPLETE PROBLEM

Returning now to the original problem which we set out

to solve, assume that the field inside the dielectric region

can be represented by

E(k’r) = ‘f [cpMp’(k’r) + dpNpl(k’r)] (8a)
~=1

where p plays the same role as u in (6) and Cfl and d~ are

unknown coefficients. k’ = o.@)l’2 = (p,&,)i ‘2k. The H-

field internal to S is given by

H(k’r) = ~ (V x E(k’r))
jcop

= -W’(yz

“ f [cyNpl(k’r) + dPMpl
~=~

k’r)]. (8b)
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The surface tangential fields n x E+ and n x H+ which

appear in (7) are the source of the scattered field in the

special problem as specified in (1). The scattered field in

the special problem is the same as the scattered field in the

complete problem (the application of the equivalence

principle insured this)-, so the surface tangential fields

n x E+ and n x H+ are the same fields in both the special

problem and the complete problem. These tangential sur-

face fields are in terms of the total external field evaluated

at the surface. In the case of the complete problem, we can

also write these in terms of the internal fields evaluated at

the surface by applying the boundary coriditions at the

surface of the complete problem.

nxH~=nx H_

nxE~=nx E..
(9)

The plus (+) sign and minus (–) sign subscripts on the

surface fields indicate that these fields are the total external

and internal fields, respectively, evaluated at the surface.

From (8), the tangential components of the internal fields

evaluated at the surface are

n x E_ = ~ [c&n x MK1(k’r’) + dKn x N~l(,k’r’)]
~=1

(lOa)

‘X H- = -’(;) 1’2(;)1’2

. ~~1 [cpn x N~l(k’r’) + dpn x Mp’(k’r’)]

(lOb)

and due to the equality of the tangential surface fields in (9),

the expansions in (10) can be substituted into the first 2N of

(7), giving a system of equations relating the unknown

internal-field expansion coefficients to the known incident-

field coefficients

F+(:)’”J]c“+k+(:)’’2’1‘K=“a”
p = I,N (11.a)

k+(2)”24‘p+P+(:)”24‘“=‘~bo
p = I,N (Ilb)

where u = 1,N, and the I coefficients are given by

while the J, K, and L coefficients have a similar form except

for the cross products which are given by M03 x NP1,

N03 x MP1, and NU3 x NP1, respectively.

This set of 2N-by-2N simultaneous linear equations can

be solved for the internal coefficients CUand du. These can

then be substituted into (8a) to find the electric field at any

internal point (M and N are functions of 0, ~, and k’r in the

interior of the object).

The electric field can be determined at points of interest

within dielectric objects with a real or complex dielectric

constant. In the case of lossy objects, the distribution of

volume power dissipation due to a specified incident field

can be determined by calculating the quantity @[E 12 at

internal points of interest (a here is conductivity as opposed

to its use in.(4) as a spherical harmonic index). The two

features which will be studied here are the internal-field

distributions and the absorption eiliciency or normalized

absorption cross section, which is given by

(12)

where A is the geometric cross section of the body and C.~,

is the absorption cross section which is equal to the total

power absorbed divided by the incident power density Si

(13)

IV. NUMERICAL CONSIDERATIONS

There are essentially three major operations involved in

determining the internal electric field and thereby the absorp-

tion efficiency or other desired internal quantity. Given a

specific dielectric object, the first step is to select an internal

origin and numerically perform the surface integrations

which are required to fill the coefficient matrix in (1 1). This

procedure is accomplished by using a Bode quadrature

technique [17]. The second step is to solve (11) for the

internal-field coefficients CLand dv. This is accomplished by

using a standard Gauss–Jordan algorithm. The third step

then is to substitute the coefficients into (8a) to obtain the

internal electric field.

The method of numerical solution for a particular prob-

lem consists of choosing a value for N (N is the maximum

value of v and u and is a combined index incorporating the

spherical harmonic indices a, m, and n), solving the set of

equations for the internal field, then repeating the calcula-

tion for successively larger N values until the final result in

(8a) converges to a specified accuracy. The maximum value

of N required for a given problem is dependent on the shape

(deviation from a sphere), size, and dielectric constant of

the object. Small spheres with a dielectric constant near

unity require small values of N, while a large cylinder with

relatively high index of refraction would require a much

larger N value for solution. To reduce the numerical com-

plexity, we consider only axisymmetric objects here. For

axisymmetric objects, many of the cross terms involving a

(the even-odd index) drop out and, furthermore, it is pos-

sible to separate out them dependence (azimuthal variation)

so that rather than solving a 2iV x 2N system of equations

once, it is possible to solve a much smaller 2n x 2n system

m times. This is equivalent to solving the problem for each

azimuthal mode separately. This simplification carries

through to the internal-field summation in (8a) so that the

internal field can be broken down into separate summations

over each azimuthal mode m. Each component summation
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is summed over n and the total electric field is then found

by summing-up the individual fields due to each mode.

The validity of the numerical procedure was verified by

making calculations for spherical bodies and comparing the

results to those obtained by the Mie theory. Comparison

was also made with low ka prolate spheroid calculations

which were obtained using the long wavelength approx-

imation [1]. Identical results were obtained in both cases.

In all subsequent calculations, an ongoing validity test is

made by first computing the internal field in an object with

the mathematical origin of the problem located at the center

of the object. The calculation is then repeated for the

same object with the origin located off-center. This has the

effect of making the physical problem appear to be different

as far as the mathematics is concerned; however, the com-

puter program must calculate the same internal field in

either case.

V. NUMERICAL RESULTS

The equations from the previous sections have been

programmed for solution on the University of Utah

UNIVAC 1108, utilizing complex double precision arith-

metic. Calculations have been made for a variety of objects

characterized by a relative dielectric constant :, = e’ — jd’

where e“ = c/coeO. The quantities which have been cal-

culated are absorption efficiency versus the electrical size

of the object (ka) and internal-field distributions at and

about the resonant point. The absorption efficiency has

been utilized rather than the absorption cross section so

that it is not necessary to specify a particular o and fre-

quency. Combining (12) and (13) and defining

gives

(14)

where c is the speed of light and B = z V/JA = k V/2A.

Note that B is a function of the geometrical shape and

(electrical) size of the object under consideration as well as

the angle of incidence of the arriving wave (the geometric

cross section A is a function of the angle of incidence).

Fig. 4 shows the four shapes considered here and gives the

factor B. Definitions of the angle of incidence and the

polarizations of the arriving wave are also given.

In the case of the internal distributions, we plot IE 12

rather than the internal power dissipation, making it un-

necessary to specify particular values of a and therefore

frequency (we instead consider their ratio in e“).

The purpose of the numerical calculations is to demon-

strate the capabilities of the theoretical method in deter-

mining the salient features of the absorption characteristics

of nonspherical objects. Rather than presenting results for a

multitude of nonspherical geometries, we instead focus our

attention primarily on one shape, the prolate spheroid. We

also show a few results for a finite cylinder and oblate

spheroid.

377

aa

Sphere

~ ka
‘0’ B90=3

o

a

b

Prolate
spheroid

Bo=:ka

690
= $ kal(aib)

z

+

ein=

x

\

Oblate
Spheroid

B. = ~ kal(alb)

.2
690

~ ka

PIa

b

Finite
Cylinder

B. = ka

- “ ka[(alb)B90 - &

Fig. 4. Definition of geometrical bodies and corresponding factor B.
The z axis is the axis of revolution and the angle of incidence is
defined as shown. End-on incidence corresponds to Q = 0° and
broadside incidence to O = 9T. The polarization of the incident
wave is defined as either parallel or perpendicular to the x-z plane.

2- 7,071- J 7,071

Fig, 5. Absorption efficiency versus ka for a 10SSYdielectric sphere.

To provide a reference point for comparison, we first

show curves of absorption efficiency versus ka for a sphere.

The resonance absorption characteristics of spheres have

been studied extensively and reported in the literature [18],

[19]. Fig. 5 shows the absorption by a sphere for three
values of dielectric constant which are multiples of each

other. The equality of the real and imaginary portions of:,

is an arbitrary choice. Qualitatively, we see that the resonant

ka point (the ka value giving maximum absorption) moves

lower with increasing t, and we attribute this to the wave-

length compression which occurs inside the sphere with

increasing E. which increases the effective interaction

volume, giving a higher loss at lower ka values. For ka

values above the peak, minor oscillations may occur but the

efficiency approaches a limiting value as ka increases. In the

limit of large ka, we would expect the absorption and

scattering efficiencies to sum up to an extinction efficiency

of 2.
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L I

Fig. 6. Absorption efficiency versus ka for a Iossy dielectric 6:1

prolate spheroid. Shows the absorption as a function of incident

angle and polarization for ku values well beyond the first resonance.
e, = 3.536 – j3.536.

Fig. 6 shows the absorption characteristics of a 6:1

prolate spheroid as the angle of incidence is varied from

end-on to broadside. To allow observation of the absolute

absorption behavior, all curves have been normalized to the

geometric cross-sectional area corresponding to an angle

of incidence of 90°. Some of the characteristics here can be

explained by the similarity of the prolate spheroid to a

dipole antenna. In the low ka region, the parallel polarized

case shows a maximum for f3i.C = 90°, while for higher ka

the absorption at 6i~C = 45° becomes greater. This is not

unexpected and is a result of the lobing effects seen in dipole

antennas as the electrical length increases above a half-

wavelength [20].

Although the effect is not as pronounced here as for a

wire antenna, physically we note that the effective length

seen by the 13inC= 45° wave is less than the actual length

by a factor of ~~. This effective length is a major determi-

nant of resonance, and therefore a higher ka is required for

resonance at 8inC = 45° than for the 19inC= 90° broadside

wave. For the 13inC= 0° end-on wave, resonance is greatly

dependent on the kb (= ka/6) dimension, and therefore the

ka value required for resonance for end-on incidence is

greater than that for the other two cases. An explanation of

the absorption characteristics for the electric field parallel

to the long axis of the spheroid based on the similarity of

the prolate spheroid to a dipole antenna is useful; however,

due to the large b dimension of the prolate spheroid relative

to a wire antenna, an alternative explanation is also pos-

sible. For low values of ka, it has been shown [2 I] that

the total absorption in a Iossy dielectric can be considered

as the sum of the power absorption due to coupling by the

electric-field component of the incident wave and power

absorption due to rotating electric fields (causing eddy

currents) which is generated by the magnetic-field com-

ponent of the incident wave. The explanation which has

been developed based on a low ka theory would appear to

account partially for the absorption characteristics noted

here, even into the medium ka region.

14.142- .i 14.142
\~

2 -
7,071- .i 7,071,

3.536- .i 3,536.

._: 1 —

Q
H
=
*.

~
:
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-c/ El 9P

/

I 1 I
“1 1 9

X
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/ 7.071- .i 7.071

// 14.142- J 14,142

k.
5

Fig. 7. Absorption efficiency versus ka for a Iossy 6:1 prolate spheroid.
Shows the effect of increasing dielectric constant for parallel and
perpendicular polarizations.

Although the original explanation [21] was used to

explain the coupling characteristics of spheres, it has also

been used to describe low ka coupling to prolate spheroids

[1]. Basically, the coupling of the electric-field component

is greatest when the electric-field vector is mostly tangential

to the surface and the magnetic-field coupling is greatest

when the cross-sectional area perpendicular to the magnetic-~

field vector is greatest, i.e., the eddy-current coupling

J E. dl = jco~ f H” dA is greatest. Therefore, the parallel

polarized case at 90° incidence has maximum electric and

magnetic coupling, the perpendicular polarized case at 90°

incidence has minimum electric and magnetic coupling,

and the zero-degree incident case has minimum electric-

field coupling but maximum magnetic-field coupling. This

qualitative explanation accounts for the relative absorption

behavior in the low and mid ka ranges for the end-on and

broadside cases. For 45° incidence, the power absorption

for parallel and perpendicular polarizations falls between

the corresponding curves for end-on and broadside inci-

dence. At higher ka values this quasi-static explanation is

no longer valid, and at the limit for which calculations have

been made it appears that the absorption is becoming rel-

atively independent of the orientation of the incident wave.

Fig. 7 shows the absorption characteristics of a 6:1

prolate spheroid due to a broadside incident wave for three

different dielectric constants (which are multiples of each

other) and two polarizations. Qualitatively, we note that in

the parallel-polarized case, the ka value corresponding to

maximum absorption decreases with increasing dielectric

constant, which is similar to the sphere behavior exhibited

in Fig. 5. Similar calculations have also been made for a

3:1 prolate spheroid and the increased polarization sensi-

tivity in the 6:1 case is clear, i.e., the curves for parallel and

perpendicular polarizations are farther apart than in the

3:1 case.

Comparing the parallel-polarization resonance (the

lowest resonance) for prolate spheroids with different axial

ratios, it has been noted that for a given dielectric constant,
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I

,~1
1 2 3 4 5 6

AXIAL RATIO, ss/b

Fig. 8. Resonant /ca versus axial ratio for a set of prolate spheroids

with e, = 14.142 - j 14.142. The circles are the resonate points as

interpolated from an absorption efficiency curve for each spheroid.

The solid line is the least squares fit.

the 6:1 spheroid resonates at a higher /ca value than

spheroids with lower axial ratios. Fig. 8 examines this

behavior further by showing electrical length at resonance

versus the a/b ratio for prolate spheroids where tlhe incident

wave is polarized parallel to the long axis. Note that for

high-axial-ratio prolate spheroids, the resonant length is

approaching an asymptote which is apparently irldependent

of the a/b ratio. This behavior is related to the relative effect

of the electric and magnetic coupling of the incident wave,

which has just been described. Consider for a moment a

set of prolate spheroids with the same a dimension and

varying b dimensions. Using the arguments given earlier,

for the case of 90° incidence we would expect maximum

coupling of the parallel-polarized electric field for high a/b

ratios where the tangential component of the electric field

on the surface would be greatest. Resonance in this case

would primarily depend on the total length of th,e spheroid

being close to a multiple of a half-wavelength. For high a/b

ratios, the coupling of the magnetic component of the

incident wave is a minimum. For low alb ratios, the electric-

field coupling is less, but the magnetic-field coupling is

greater (the cross-sectional area normal to the H-field

vector is greater). If we think of the H-field coupling as due

to closed loops about the H-field vector (eddy currents),

then we would expect maximum coupling (resonance) when

the circumference around the long dimension of the spheroid

is an integral multiple of a wavelength (or equal to one

wavelength for the first resonance). Setting the circumfer-

ence around the long dimension of the prolate spheroid

equal to a wavelength, the expression for resonant ka due

to magnetic-field coupling of the incident wave is

(ka),e, = ~2/(1 + b2/a2).
,—

Note that for a sphere this is unity and it saturates at ~2
at high axial ratios. For low axial ratios, magnetic coupling

appears to be the primary determinant of resonance giving

away to E-field dominance at higher ajb ratios and this

accounts for the increase in resonant ka with the axial ratio.

For a perfectly conducting wire antenna, we wcmld expect

maximum electric-field coupling for the length equal to J,/2

or ka = n/2 = 1.57, It is clear that the curve in Fig, 8 is

,.-
ka 2s

Fig. 9. Absolution efficiency versus ka for a Iossv dielectric 3:1 finite
cylinder’and prolate s~heroid with e, = 3.336 – j3.536.

1
1 Volt/Meter Incident Cylinder

\
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Fig. 10. Internal field IEI 2 distributions within a 3:1 prolate spheroid

and cylinder at the approximate resonant point (,ka = 1.5). Broad-
side incident wave.

asymptotic to a value higher than this and this may be due

to the relatively low conductivity of the prolate spheroid

compared to a wire antenna,

Fig. 9 compares the absorption characteristics of a finite

circular cylinder and a prolate spheroid, both objects having

identical overall dimensions, The absorption characteristics

of the two shapes are very similar and it would appear that

the details of the shape are not critical in determining the

absorption. Fig. 10 gives the internal-field distributions at

ka = 1.5 (the approximate resonant point) for both the 3:1

prolate spheroid and the 3:1 circular cylinder. The internal-

field distribution for the spheroid and cylinder are also very

similar. One interesting feature here is that the field is

greater on the backside of the cylinder than on the side upon

which the incident wave strikes.

Fig. 11 gives the magnitude of the surface field around the

major and minor dimension for the 3:1 prolate spheroid

shown in Fig. 9. The capability of being able to determine

surface fields should permit further understanding of the

reactive-field energy-storage characteristics of dielectric

objects, which is important in microwave-resonator applica-

tions. Although these curves simply show distributions

along the surface in two directions, it would be quite easy

to generate contour plots if we were interested in a detailed

study of surface-field behavior.
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Fig. 11. Surface fields IE] along the major and minor surfaces for the

3:1 prolate spheroid. e, = 3.536 – j3.536 and k = 1.5. Broadside

incident wave, parallel polarization.

Fig. 12.

Fig.
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Absorption efficiency versus ka for a 10SSYdielectric 3:1
oblate spheroid.

2 shows the absorption efficiency for an oblate

spheroid. Comparing this curve to corresponding curves

for the prolate spheroid, we see that the earlier explanations

of relative coupling and resonance frequency location also

apply here, In particular, when the incident angle is zero

degrees, the spheroid looks almost like a disk to the im-

pinging electric field and therefore the electric-field coupling

is very strong due to the large area of tangency, Using the

previous arguments on the independent coupling of electric

and magnetic components of the incident wave, we note

that for end-on incidence, the magnetic-field coupling
would be relatively weak, but the electrical-field coupling

is so large that this case gives the maximum absorption. For

broadside incidence with the electric field parallel, we have

minimum electric and magnetic coupling and therefore

minimum absorption, The electrical-field perpendicular case

for this angle of incidence has medium electric-field cou-

pling and large magnetic-field coupling giving a value of

absorption lying between the other two cases.

Calculations have been made to determine the limitations

of the numerical technique. Using a prolate spheroid model,

ka and 8, were increased until the origin off-center validity

test showed that erroneous results were being generated.

Fig. 13. Absorption efficiency versus s, for a 3:1 prolate spheroid.
ka = 1.5. Broadside incident wave, parallel polarization.

When this occurred, the computer program was dissected

to determine the mode of failure. It was found that the

matrix associated with (11) becomes ill-conditioned with

respect to matrix inversion and solution and that this ill-

conditioning appears to be a function of the same variables

which determine the matrix size required for convergence,

i.e., the shape (deviation from a sphere), size, and dielectric

constant. Ill-conditioning means that the solution vectors

(in our case c and d) are very sensitive to small changes in

the coefficients of the (K–L–Z–Y) matrix and/or the right-

hand side coefficients (a and 6). It is an indication that the

finite precision arithmetic available in the computer is not

sufficient to differentiate the correct solution out of a range

of solutions which satisfy the equations to the precision

limits of the machine [22].

Given an object for which a numerical solution is not

possible, it appears that of the physical characteristics that

define the object (shape, size, and e,), that reducing the

dielectric constant is most effective in restoring the condi-

tion of the matrix and thereby giving a solution. This indi-

cates a possible means of extension of the envelope of cases

for which the EBCM would be effective. Assume that one

requires the solution for a given object for which a straight-

forward application of the EBCM gives an ill-conditioned

system of equations, Then a set of calculations can be made

for a series of reduced dielectric constants and a curve of

Q,., versus e, can be generated and used to extrapolate to
the higher dielectric constant of interest. Fig. 13 shows such

a curve for the 6:1 prolate spheroid at ka = 1.5. Note that

the curve goes through a maximum which indicates a broad

region where the absorption is relatively independent of e,.

Also we note that the absorption efficiency can decrease or

increase with a given change in z,, depending on which side

of the peak we are operating. This technique has been

employed to calculate the power absorption in muscle-

tissue prolate-spheroid man models at VHF frequencies

where the complex dielectric constant is typically on the

order of a hundred,

VI. CONCLUSIONS

It has been shown that the EBCM can be used to de-

termine the field within and on the surface of nonspherical

dielectric objects during illumination by a plane electro-

magnetic wave. This information can be used to calculate
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the absorption characteristics, maximum field points, or any

other quantity desired. The theoretical technique as pre-

sented here is applicable to isotropic and homogeneous

bodies. We have considered objects with a complex di-

electric constant and have examined the dependence of the

absorption efficiency on the ~onspherical shape. The

numerical limitations of the technique have been investi-

gated and a method for extending the region of applicability

has been indicated.
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